wS [

ftAUE t NBYSRA

Whitepaper- EPiServer

>

TABLE OF CONTENTS

[a1 0o [0 o i o] o F PP P PO PPPPPRPPPN 3
Y 4] 1 = (o ST PP U PP PPPPPPPUPRPPPPIS 3

2 FoTod (o | (o 11] o PSP PR UPRR R 4
(O] (=0 1)V SO PP P PP PPPPPPPPP 4
Y0 11 1o] o O PSP PP PPPPPI 5
18] 01 | £ PP O TP PPPPPPPPP 5
PropoSed ArCIILECIUIE.eeeeeeeeeeeee e e e e e e e e e aaaaaaaaeas 5
TECNNOIOQY SEACK ... eeiieiiiiiiiiiiee et e e e e e e e e e e e aaaaaaaeas 6

N C=Tol U 1[0 o PP PP PPPR T PPPPPPI 7
PrOCESS & TAUM.....uuuiiiiiiiitiie ettt e et e e e et e e e e e e e e e s e s s s e s e e s e e sne e e e e e e e e eeneeeees 7
Challenges and WOIKaArOUNGS.ooiiiiiiiiiiee et e e s e e e e e eas 10
THMIEITAIME. ..ttt e e bt e e e bt e e e b et e e s b e e e e s nbeeeean 11
... 12
(0] o[11 5] 0] o H TP SO PPPPP PP 12
KBY TAKEAWAYS. ..ottt e e ettt ettt e ettt e e e e st e e e e e e b e e e e e e e s es bbb e e e e e e e e e nnnnneeeeas 12

INTRODUCTION

ABSTRACT
Reality Premedi&ervicedhashelped develop and deploy a CMS solutiondailientin the Travel and
Hospitality domain. The CMS used for development was EPiServer, whiblEif based CMS.

The two biggest criteria for this CM&re performance and flexibilitywe created a huge number of
blocks and page types to allow the content editors to mix and matetient blocks while building out
content pages

The solution was hosted on the EPiServer DXC (Digital Experiencea@hboglthe end hosted around 6
different sites.This was across three different servers based on the type (B2C, B2B etc.).

Other thangenericO2 y 1 Sy i1z GKAA&A &AGS ftaz2 KFER (2 &aSNBS
different hotels or hotel + flights were advertised and could be filtered and searched. This data came from
an external system. This needed to be synchronized periodigitiythe external service so that we could
serve data quicker¢t KSNX ¢l a Ffaz2 | ao221Ay3e of201 0K
the end user to book a deal once it had been selected.

The entire site wasccessible by the WCAG guideiinend could be used completely using just eh
keyboard as well. It was thoroughly tested using uwéceoverNVDA, JAWS etc.

We started with 2 resources working with the US team full time and over a period of two years, scaled
up-to 30 resources engagedt the client across three teams.

BACKGROUND

The direct clienis the technology wing ahe client which deals in the Travel and Hospitality domain.
They work with different resorts and help them with the branding, infrastructure, maintenance etg. The
also handle their whole online presencihey also hold training programs for travel agents to educate
them on the different resorts and feature¥hey alsoown their own brand that is an aggregator of
different resorts and packagess well as handle pkages for different external groups like Funjet
Vacations, Southwest vacations etc.

The clientsolutions approached us via our solution partner, Infarsigtitey were working with an
EPiServer vendor and wanted to chargehey felt that development wasggressing too slowlgnd the
turnaround time for different projects was very high.

CKS G022 1Ay3a SyaaySe gl a odzif G 0 dandlexpes&LldPslfori S (S|
integration.This was sold as a separate product to different companies, thhasweeeded to be integrated

on the sites that we were building. Most of the brands in question already had websites built on different
platforms, from Hermes, tdEM. The objective was to consolidalethesewebsites into a single system.

OBJECTIVES

The solution needed to be highly customizable.

The solution needed to be simple to use for content editors

The solution needed to ba&ccessible

The solution needed to be highly performant as the visitor count to these websites were very high
The solution needed to be Compliant with Web standards

The solution needed to work across multiple DXC instances

= =4 =4 4 -8 A

SOLUTION

INPUTS

When we were onboardedhe clienthad already built out their Agent Management websites. These had
been done with the preous vendor. We needed to build the tools required for content editors to build
websites for Vacation brands like Apple Vacatiand Cheap Caribbean.

There was a design team that was in place that ensure that the site was designed according to the bran
guidelinesand we were provided the wireframes for thi%e used these to determine the different block
types we needed to construct to allow content editors to build out the website correctly.

From the backend side, we were also gitlee APl documentatio for the booking engine that allowed

us to fetch deals that needed to be shown on our web3dte were also given an additional constraint
that since we have different environment for different types of services, we would need to ensure that at
a code leel, we could mix and match services atedine available services per DXC.

All development took place on Citrix Vidovided bythe clientas a security measure.

PROPOSED ARCHITECTURE

The architecture of EPiServer DXGstendard so we will instead describe the architecture of the
customizations we made for site settinggpbal settingsas well asntegrating with the booking engine.

Services

Yy

Environment Specific
Blocks

¥

Booking Engines Main Site }I Core Project P—){ Commons
A A

4

Booking Widget Analytics
Style Manager

o

Flow:

External
Repository
Cache " N
Synchronizer N | DDS
repository
Content Deals Processor
Repository

Custom Block Data > Website

User

Technology Stack
The technology stack used was as follows.

EPiServer CMSASP.NET MVC 5
Frontendc jQuery + AngularJS
Datastore- Azure SQL

ContentData Storage Azure Blob

CDNc¢ Cloudflare

Cache SynchronizatianAzure Event Hub

=A =4 =4 =4 - =9

Y

* Global Setlings
Service

/ Site Settings

Service

——» Siyle Manager

Execution
The first step after getting onboard was to evaluate the existing system and gatheonistraints of the
build out. We also interacted with the previous vendor agidcussedhallenges etc.

Based on that, we created a list of architectural improvements that needed to go into the application and
started working on building that base. It igrthg this period that we worked on the code modularization
usingNuGetpackage addonstc. We also noticed that even though EPiServer uses a lot of Repository and
other Design patterns, most of this was ignored when building out the initial site. We kedidhesite

to make sure that everything fit into the patterns used by EPiServer.

Following the initial architecture overhauhe developers were each given a module/feature that they
were responsible for and they set out to develop it. All the depengenanagement had already been
setup by the Architect, so it was quite simplework in modules like that.

A couple of months in, we had to setup a third DXC for a different type of business. This was the first test
of the modular approach to building an environment. This went off quite successfully and it tcoolple

of weeks to build out a new DXThis wagust the initial stitching together and configuring and not
building out any new features that werequired for the new DXC.

One of the bigger tasks that we had to retrofit was accessibility. While not a priority during the initial

phase of developmentye needed to ensure that all sites built on this platform were accessible, while
minimizing the amount of work that content editors would be doiile thisdid notreally require and

architecture overhaul, but it required us to revisiteryaddon and asure that the right metadata was in

place.We confirmed that the site was accessible using JAWS with IE, NVDA with Firefox/Chrome and
Voiceovemith Safari.

¢2 NBRdzOS RS@St2LISyd GAYSZ 6S | faz2 o0dzif (usimgdzi |
SCSS behind the scenes, we build out an addorttiiat 2 6 SR 02y G Sy i &l RYAyaé¢ (2
variables at a site level. This would be the piece that provided the scheme andooéimer guidelines to

the entire website and could be changadrh website to website.

We also went out to build new site settings, global settjragsalytics cache manageand other modules
to ensure that provided us the flexibility to modularize the code as well as manage who had access to
what.

PROCESSTEAM

The teamstarted withtwo backend developers with an additional cloud architecb&gin work on the
application In a couple of months, once the main framework was decided, we started to add multiple
resources across different team#/e also onboarded mutile QA resources to help test Accessibility and
other things.

9 Developers

3 Team Leads

4 QAs

1 Architect

2 Project Manages

= =4 =4 -4 4

1 8 Content Management

We follow Agile Scrum internally for all projects and this project is no exceftitandifference here is
that the in 2 of the four sulprojects, the Scrum master was frahe O f A Sigé &r@ &e were using their
boards on TFS instead of our boards.

We usedl'FS 200 as our code repositonpll user stories, features and bugs weeeked on azure boards
along with all sprint management features.

All deployments and builds are completely automated usingitR8CI/CDpipelineswhich deploys both
mobile apps as well as to tieXCcloud.

.dzZ2& | yR dzia SNJ & 2 bakeSoa links NiBated wittzise coNa:heild aguSalRba pulls,
instead of developers manually resolving items.

All pull requests made from a feature branch need to be code reviewed byetime leadbefore it is
approved and integratedMajor releases requir additional approvals from the dev managand
architect.

Ul UX Desiger

| Creaie

i
z
fi

it
L

ki

Adiust process /
prioritzation

H
K

5ed on

i

For eacn Feature

For eaeh spant

On compietion,
pull 1o Alpha

Send waekly

Daly Scrum call updates lo
‘stakehoiders

‘Alpha Build QA tests

Bi weekly
Fix Bugs immedistely Stakehoider meeting

Pul to Beta for
UAT

ta Buid Stable

CHALLENGES AND WORKAROUNDS
EPISERVER DATA REPOSITORY

We needed a place to store dafetched from API. The first choice was to user EPiServer commerce and
put the deals as items there. But umfonately, wedid not have a license and business decision was
made to not purchase it. The second option was Redis, but this too was rejected as an option. So, we
decided to use EPiSer@iown caching mechanism that was based on HTTPCache.

When pullingdata from the External API (for booking information) and cachingétran into an issue

with the way EPiServer DXC is set@pche is not synchronized across multiple server instances within

one DXC. The ISynchronizedObjectinstanceCache only synchmelzgons. This means that depending

on which instance is serving data, you may or may not get data.

2SS ONBIGSR I yS¢ Y2RdzZ S OFIffSR a55{/ | OKS¢d ¢KAAZ
(Dynamic Data Store). The idea was that everything isskbatto HTTPCache, but If it needs to do a cold
reload, then instead of having to make the API calisjlituse the database instead.

CODE SEGREGATION

Since we had multiple DXC with different audience types and feature sets, wedvénrgfeature set
available to each one to be configurable without haviagclone the code across those DXC#oning
would lead to a huge increase in maintenance. The vagsithat when a developer setup an environment,
they would be able to specify what moeslit needed to run and then you could just spin up an instance
with that feature set.

We decided tacreate multiple NuGet packages thaere selfcontained. The only dependency was the
Core package that haall the interface defirtions.If any addon neeed to support site settings, it just
declared it as a dependency and processed to use it in the standard Dependency Injection pétern.
dependent addon itself was responsible for managing the admin Ul etc. for that fe&ap@hen we

went from DXC tdXC, we were able to install the libraries needed for each on (for example, which
booking engines were supported) and they were auto registered.

CONFIGURATION
. @& RSTlrdz 6 9LIAASNIISNI {SSLIA daAridsS aSdaAay3ae a |
couple of issues when managing permissions. This is an even bigger problem when you want modular

code coming from different addons, because thegyuld not be able to inject the requiredetting onto
that screen.

We went out and created brand-new service called the ISiteSettingsService. This service was backed by
DDS and had a whole separate admin panel in EPiServer that could be controlled orwighogvainular
permissions (Permissions for Functions). Using this service, any external addon could inject its own
definition of what it neededhe content editor to specify at a site level and could be made completely
plug and play. The same concept waktearled to both the style manager as well as global settings.

10

TIMEFRAME

The first site went live in about a month with a team of three people.sifisequent sites took between
3-4 months each, excluding bugfixes, improvements etc. We were perpetuallygadew features and
capabilities to the websites as new sites came along.

Later, along with these websitesye even create a completely new addon that integrated with Widen and
gave content editors the ability to embed data from the Widen DAM into thgstesn. The entire
engagement (so far) lasted 2.5 years.

11

CONCLUSION

Reality Premedia worked witthe client to build acutting-edge solution on top of EPiServer CMS. We
added a ton of features that EPiSerdares not support yet (at the time of writing) and ensure that all of
them were extremely performanfThe entire application was enterprise grade and not just your run of
the millwebsite.

KEY TAKEAWAYS

Built new addons from scratch

Optimized underlying framework

Build a better caching mechanism than the out of the box solution
Supported easy maintenance acrossltiple DXCs

Reduced GTNurnaroundtime

= =4 =4 4 =4

12

